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Role of metrics
I In conventional theories the metric of spacetime gab is not

a dynamical variable – it is a fixed background structure.

I It appears in the kinetic term (and propagator) of any
theory:

S =

∫
dtqabẋaẋb

qab is the (usually invisible) Euclidean 3-metric in particle
mechanics, and in

S =

∫
d4x

√
−ggab∂aφ∂bφ

gab is usually the Minkowski metric.

I A fixed gab and its symmetries (eg. Poincare invariance)
are an essential part of standard quantization methods (–
there is no Schrodinger eqn, QED, QCD, even string
theory, without a fixed metric).
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General Relativity I

I General relativity and its extensions are theories with a
dynamical metric.

Gab(g) = 8πTab(φ,g)

I There is no fixed background metric: metric and matter are
solutions of coupled equations.

There are only two types of classical theories: background
dependent and independent.



General Relativity II

Numerous solutions of Einstein’s equations are known – most
are not physically interesting.

The most useful are the simplest

I Spherically symmetric vacuum solution: Schwarzschild
black hole

ds2 = −
(

1 − 2M
r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dΩ2

Stable and singular solutions that arise as the end point of
gravitational collapse.
Have an event horizon at r = 2M: for r < 2M light cones
tip toward the singularity.
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I Homogeneous and isotropic cosmology (FRW)

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2)

with a fluid matter source with energy density ρ(t),
pressure P(t), and equation of state P = kρ.



I Gravitational waves: one writes

gab = ηab + hab

with ηab treated as a fixed background. hab satisfies the
wave equation to linear order.

For special solutions like these there are preferred frames: the
coordinate transformations that leave the metric form invariant.
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Quantization I: no gravity

I The conventional textbook quantization procedure is
background (metric) dependent (regardless of the type of
theory): How?

I Wavefunctions ψ(~x) are a special class of functions from
3-space (a manifold) to the complex numbers. Integration
of functions requires a measure — provided by a metric.

I The inner product and matrix elements all depend on the
Euclidean metric qab

< φ|ψ >=

∫
d3x

√
qφ∗ψ.

I In quantum field theory it is the Minkowski metric.
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Quantization II: Semiclassical gravity

We know matter is quantum. So how does quantum matter
behave on arbitrary backgrounds? Replace Einstein’s equation
by

Gab(g) = 8πG〈ψ|T̂ab(g, φ̂)|ψ〉

Combines G, c~. Given a state |ψ〉, it is an equation for a

semiclassical metric gab.

I How is |ψ〉 chosen? What is g if it is a linear combination of
squeezed? etc.

I Is it consistent? The r.h.s might require regularization and
renormalization.
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This approximation is used in two famous settings with the state
chosen as a vacuum.

I Hawking radiation: Schwarzschild metric

I Structure formation in cosmology: FRW metric

The cosmological constant problem arises in this
approximation: if |ψ〉 is a vacuum state 〈T̂ab〉 is ultraviolet
divergent.
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A metaphor

To see how odd this approximation can be consider this
“inverse” problem. Pick a quantum state ψ(~x) and an energy E,

and “solve” the Schrodinger equation

Hψ = −~2qab∂a∂bψ = Eψ

for possible metrics qab.



What is quantum gravity?

A consistent theoretical scheme that uses the “fundamental
constants” ~, c and GN —- OR one that derives them from
more basic considerations.
It must have at least the following features:

I Classical singularities are resolved (like QM does for the
atom)

I The metric “emerges” as a macroscopic observable:
gclassical

ab = 〈ψ|Θ̂aΘ̂b|ψ〉 but what is |ψ〉

I It satisfies Einstein’s equations

NO SUCH THEORY IS KNOWN
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Approaches to quantum gravity

I The metric is a fundamental field and should be quantized:
quantize GR with matter.

I The metric is a low energy collective state of some other
fundamental theory.

The rest of the talk is concerned with the first approach.
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Background independent quantization

Since the metric is a dynamical variable, quantization should
not use a fixed spacetime metric. Not as exotic as it sounds.
Any quantum mechanics problem posed as a matrix model is
background independent. Examples:

I Oscillator quantized algebraically using a,a†. (An
application to other geometric (topological)theories (VH, PRL 96

221303(2006))).

I Any spin system on a lattice: finite dimensional Hilbert
space associated with points.

This suggests how to quantize a particle without a background:
associate a one dimensional Hilbert space at each point.
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A particle as a matrix model

Lattice xn = nλ, (n = · · · − 1,01, · · · ).

I Hilbert space |k〉

I x̂ |k〉 = λk |k〉

I êiλp|k〉 >= |k + 1〉 (hopping operator)

This is a scale (λ) dependent quantization of the particle.
Kinetic energy operator is written using T̂λ = êiλp.



Hydrogen atom: Is there a 1/x operator?

1
|x |

=

(
2

1
iλ

T ∗{T ,
√
|x |}

)2

Thiemann (1996)
I Spectrum of 1/x operator is bounded.
I Hydrogen atom spectrum is reproduced for λ << Bohr

radius

I Trick used in cosmology to get bounded inverse scale
factor (Bojowald (2001))

I Can be used to get a quantum gravity corrected wave
equation: replace scale factor by its expectation value in
some state.
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The problem

Find the quantum theory of the gravity + scalar field in spherical
symmetry: Fields gab(r , t) and φ(r , t)

Metric:
ds2 = −f (r , t)dt2 + g(r , t)dr2 + r2dΩ2

I Put system in Hamiltonian form (ADM variables for GR)
I Fix a time gauge condition

Resulting theory has two fields and their conjugate momenta.
There is a constraint due to residual gauge symmetry (like
Gauss law in EM). Evolution via Hamilton’s equation

(VH, O. Winkler Phys.Rev. D71 (2005) 104001)
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Background independent quantization

I Introduce a radial lattice. Field variables have values at
discrete points

I Define action of basic operators
I Construct Hamiltonian and constraint operators
I Operators for trapped surface detection
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What is a black hole in quantum gravity?

I The event horizon is a global classical entity: “The
boundary of the past of future null infinity”

I Not useful for local physics even classically: How would
you determine if you walk into a black hole? Need a local
test.
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Trapped surfaces I

Penrose’s idea of trapped surfaces: consider closed two
surfaces S in space, and ask what happens if the surface lights
up:

I There is normally an outgoing and ingoing spherical wave
surface.

I If the surface is in a gravity region, outgoing wave surface
is redshifted (but it is still outgoing).

I The surface is trapped if the outgoing wave surface does
not expand.

Calculate divergence of outward and inward pointing null
vectors la± at the surface:

θS
±(r , t) = ∇ala±|S
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Trapped surfaces II

I S is not trapped : θS
− < 0 and θS

+ > 0.

I S is trapped: θS
+ < 0 and θS

+ < 0.

I Space can be divided up into domains containing trapped
and untrapped surfaces.
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Quantum gravity test of light trapping

I θ±(g, φ,Pg ,Pφ) is a phase space variable

I Construct the corresponding operator in a background
independent quantization.

I A state is a quantum black hole if for all r

〈θ̂−(r , t)〉 < 0,

and
〈θ̂+(r , t)〉 < 0

for r < r∗ for some r∗.

( VH, O. Winkler Class.Quant.Grav. 22 (2005) L135 )
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Gravitational collapse in quantum gravity

A complete regulated theory is ready for calculation. Being
implemented numerically.

I Pick initial state
I Evolve with Hamiltonian: singularity free (VH, O. Winkler, Class. Quant.

Grav. 22 (2005) L127 )

I Test state for trapping at each time step
I Ensure constraint satisfied at each time step
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I Bounded curvature implies a maximum energy density:

the ultimate Fermi pressure!
I No black hole explosions: a maximum temperature
I End point of Hawking radiation is a Planck scale remnant:

may be around at the LHC.
I A complete set up to do gravitational collapse calculations

in quantum gravity.
I A similar scheme is being developed to study quantum

gravity in the early universe.
I How does the semiclassical approximation arise?
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