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Factorization Theorem
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Universality of parton densities and factorization,
a naive proof

Exchange of hard gluons among

quarks inside the proton is qu glq q>0 / 0 d*q 1

1
q q6 Q?

suppressed by powers of (mp/Q)2

T=1/
A

m
Typical time-scale of interactions / L
binding the proton is therefore of O g g

(I/mp) (in a frame in which the proton

has energy E, T=Y/mp = E/mpz) ffqa ffqa

If a hard probe (Q>>mp) hits the proton,

on a time scale =1/Q), there is no time for
quarks to negotiate a coherent response



As a result, to study inclusive processes at large Q it is sufficient to
consider the interactions between the external probe and a single parton:

1) calculable in perturbative QCD (pQCD)

2) do not affect f(x): Xpefore = Xafter

q>Q Q
Paiidz s 3d P
S il it
. A A
%, This gluon cannot be
T R e T T i reabsorbed because

the quark is gone

g<Q 1) Xt efore * Xafter = affect !
| TP

2) for g=1 GeV not calculable in pQCD

However, since T(q=1GeV)>>1/Q, the emission of low-virtuality gluons will take
place long before the hard collision, and therefore cannot depend on the detailed
nature of the hard probe. While it is not calculable in pQCD, f(q<<Q) can be

measured using a reference probe, and used elsewhere =

Universality of f(x)



Q dependence of

parton densities Q>u
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The larger is Q, the more gluons will not have time to be reabsorbed
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f(x,Q) should be independent of the intermediate scale P considered:

df(xv Q) Ll df(xal/t) . /1 dy 2
d]/tz =10 i dﬂ2 o Y f(yal/t)P(x/yaﬂ )
One can prove that:
calculable in pQCD
) ate il 7
P(x,0°) = ——=P(x)
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and therefore (Altarelli-Parisi equation):
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dlogi? 2w/,
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More in general, one should consider additional processes which lead to the

evolution of partons at high Q (t=logQ?):
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Example: charm in the proton

de(x,0) o ('dy X
i i ﬁ/x Yg(yaQ)qu(;)

Assuming a typical behaviour of the gluon density:
8(x,0) ~A/x

we get:

S0 % [\ oy 5 [Nl 52

and therefore:

2

(6,0) ~ < log(=) g(x.0)
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Corrections to this simple formula will arise due to the Q dependence of g(x) and of ts



Examples of PDFs and their evolution
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Drell-Yan processes:

Q|

Goals:
* Tests of QCD: 0(W,Z) known up to NNLO (2-loops)

e Measure m(W) (= constrain m(H))

o constrain PDFs (e.g. fup(x)/f Jown )

i It
e search for new gauge bosons: 49 — W', Z

il _I_ pih |
e Probe contact interactions: qq€ 4



L.O Cross-section calculation
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Some useful relations and definitions

1. Ey+p 0
Rapidity: y = > log EZ T Zg// Pseudorapidity: m = —log(tan 5)

where:

tan0 = p_z and pr = Vp%—l—p%

P

Exercise: prove that for a massless particle rapidity=pseudorapidity:

S
Exercise: using T = S — X1X» and

{EW HY (.X1 _I_XZ) Ebeam 1 1

X
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prove the following relations:
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Study the function TL(T)

1
Assume, for example, that f(x)~ 75 0<d<1
Lt it b 1 1
Then:!!|'L(t), = | 7F(‘E)1+6 S log( )
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Therefore the W cross-section grows at least logarithmically with the
hadronic CM energy. This is a typical behavior of cross-sections for
production of fixed-mass objects in hadronic collisions, contrary to the case
of e+e- collisions, where cross-sections tend to decrease with CM energy.
Note also the following relation, which allows the measurement of the total
width of the W boson from the determination of the leptonic rates of W and
Z. bosons, i el v L

= (o) () ™

ete

LHC data LEP/SLC
theory



DY final states

m(ll) >110GeV >400GeV

F TEV-2000 10 fb™
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LHC 100 fb™

LHC 100 fb™*
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Rates and discovery reach for As seen from the plot in the

Number of events
—
o

SM-like new Z bosons

= 3000 b

o 300 b

previous page, the SM DY rate

falls below 1 event/1o0 fb * once
above mDY>2TeV. In the high

mass region the bg contamination
(which includes also dilepton
pairs from ttbar events) is totally
negligible. A discovery based on

observation of 10 events, leads to

i | 3 ‘ | 3 | a reach of
IR R AL it 5.3 TeV
LR AT P T U for the standard high
1 R il I i Kt N i luminosity option, and of
e’e” and u'u” modes 6.5 TeV
10 ] SRR ioeh Ghir G —L....|  for the super LHC upgrade
SNG4 DL S TBLS 111 16(11116.5](1),7
Mass of Z/ , 1eV
mZ)(TeV) 2 3 4 5 6
rz,(GeV) 62 94 126 158 190




Jet production
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Inclusive production of jets is the largest component of
high-Q phenomena in hadronic collisions

QCD predictions are known up to NLO accuracy

Intrinsic theoretical uncertainty (at NLO) is
approximately 10%

Uncertainty due to knowledge of parton densities varies
from §-10% (at low transverse momentum, pto 100%

(at very high p-, corresponding to high-x gluons)

Jet are used as probes of the quark structure (possible
substructure implies departures from point-like
behaviour of cross-section), or as probes of new particles
(peaks in the invariant mass distribution of jet pairs)



Phase space and cross-section for LO jet
production
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The measurement of pT and rapidities for a dijet final state uniquely
determines the parton momenta x and x . Knowledge of the partonic

cross-section allows therefore the determination of partonic densities f(x)



Some more kinematics

Prove as an exercise that

A{io s ] cosh y* e
beam
where M e N1 +MN2
Y > Sl T 7

We can therefore reach large values of x either by selecting large invariant

mass events: T
PT_ osh it/ s

beam
or by selecting low-mass events, but with large boosts (y; large) in either

positive of negative directions. In this case, we probe large-x with events
where possible new physics is absent, thus setting consistent constraints on
the behaviour of the cross-section in the high-mass region, which could hide
new phenomena.
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Example, at the Tevatron

DO jet data, and
PDF fits
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Jet production | | PR
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The presence of a quark substructure would manifest itself via contact interactions
(as in Fermi’s theory of weak interactions). On one side these new interactions
would lead to an increase in cross-section, on the other they would affect the jets’
angular distributions. In the dijet CMFE, QCD implies Rutherford law;, and extra
point-like interactions can then be isolated using a fit. With the anticipated
statistics of 300 fb-1, limits on the scale of the new interactions in excess of 40
TeV should be reached (to increase to 60 TeV with 3000 fb-1)



Top quark production

Heaviest elementary particle known today

e 175 GeV = top Yukawa coupling=1! The most natural value for a

fermion mass: a special role in Nature for the top quark?
LHC will be a “top Factory”: 0~800 pb =10’ events/yr, 1HZ!
Large statistics = statistically accurate determinations of the top

properties:
e mass (crucial to better constrain/predict Higgs mass)
e production cross-section (accurate QCD tests)
New physics BSM
e rare decays (indirect searches for new physics, e.g. FCNC)
* signal, parent, partner and background for new particle production:

o gluino = top stop, stop = top neutralino, H =t bbar
o top—H'b



pp ~ tt, VS=14 TeV

o (pb) (0. at NLO + NLL QCD

MRST, o (M;)=0.1175, ky=0.4 GeV
A=0, M=m,

pp - tt, VS=14 TeV
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Some rare top decays

BR( t*bfiw )oc Vigl” = (107%,1.6107°, 1) ~ (1, A%, A°) forg =d,s,b
q

Probability of not identifying b quark large, BR(t— W+d or s) very hard to measure
GIM suppression/CKM unitarity
W m‘%ﬁj\f ZIY / | ‘ :
BR( S ) { (ﬂ) Ve GW} ~ 10713

Beyond any possible reach, unless new sources of FCNC. E.g., the SUSY partner of
the above graph, with charginos and CKM-not-aligned down-type squarks.

m;

t—= WZb: m(b)+m(W)+m(Z)=176 GeV implies that the decay is just barely allowed
by phase-space, once finite-width effects for the W and Z bosons are included. Very
sensitive to m(top), could be an excellent probe of m(top). Unfortunately BR in the

range of 10_6, below experimental sensitivity (need to include BR(Z—ee) and BR
(W —ev) as well)



Mode SM BR Allowed BSM
sW 1.6 E-3 0.25 (4th family) mi

dwW ~1 E-4 0.01 (4th family) mi
bWZ 2 E-6 same 1
cWW -~1E-13 1 E-6 (FeNo)

ole ~5 E-11 1 E-3 (Mssm)

cy -5 E-13 1 E-5 (mssm)

cZ ~-1E-13 1E-4

cH <E-13 1E-4



