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We would like to build a 2-3 TeV linear collider
which produces luminosity efficiently.

What do we need?

An accelerating gradient of at least 100Mv/m and low emittance beams.

One of the key elements to achieve these performances are the

ACCELERATING STRUCTURES

*Accelerating gradient is obviously up to the accelerating structures™
*But they contribute to emittance growth along the linac*

We need to design for these two objectives, which it turns out, are
profoundly interrelated.




I would like to present to you,

An overview of the structures
mixed with

An overview of the research and
development program we undertaking



Traveling wave accelerating
structure basics

Electric field ——

High power microwaves in

Higher energy beam out



Accelerating structure basics

'Slow wave' structure to provide synchronism between rf
wave and beam. Solutions to periodic boundary conditions
much like solid state physics, pass/stop bands, Brillouin
diagrams etc.

Another picture: coupled
TM,;, mode resonant
cavities




Accelerating structure fundamental mode field pattern.
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Physical limits to accelerating gradient

n.b. superconducting cavities are limited to a maximum gradient of about
50 MV/m given by useable cavity shape and theoretical maximum surface
magnetic field. We need over 100 MV/m so from here on out we speak about,

Normal conducting cavities

» rf breakdown: sparking, or technically vacuum discharge, induced by surface
electric field, interrupts rf pulse, exhibits maximum threshold, eventually
causes damage.

- pulsed surface heating: Very short pulses, 10s to 100s of ns, and heating
from rf losses from currents in skin depth result in significant thermal
stresses. Repetitive cycling, 100 to 200 Hz, over long running periods, 20
years, results in fatigue cracking and surface breakup.




Luminosity - wakefield basics

Long-range transverse wakefields: Misalignments, beam and structures, induce
higher-order modes which kick subsequent bunches which kick the following ones
even more. Effect shown in yellow.

Short-range transverse wakefields: Misalignments, beam and structures, induce
diffraction of field following relativistic bunch which acts back on itself causing it
to grow in phase space (very, very higher-order modes) Effect shown in green.



Now we will revisit these effects,
- Limits to gradient

- induced emittance growth

in greater detail...



rf breakdown

At one point as you try to raise the power/gradient in the structures, sparking
begins. Gradient still goes up for a while, conditioning, then saturates.

Related to dc vacuum breakdown but the theory
is not complete. Two steps,

Trigger mechanism: Surface electric field
initiates localized field emission and tensile force
causing catastrophic failure of microscopic sized
surface. This initiates arc.

rf/arc interaction: Power from rf is absorbed by
electrons in arc causing heating, melting,
evaporation, ionization, plasma...




rf breakdown continued
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What can we do about rf breakdown?

* rf design for low surface electric field and low pulse
energy structures

* rf design for short pulses

- New materials

Which we study in 30 6Hz and 11 GHz rf structures, and
a dc spark set-up.



High-gradient test
stand, CTF?2

transfer line

CTF3
linac

7A, 90,MeV, up
to 300 ns beam

PETs branch /



30 GHz rf power facilities
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30 GHz Mo-iris structure p
Conditioned to 140 MV/m, 70 ns, 52 MW )

Presented at EPAC
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30 GHz copper 2m/3 structure
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Breakdown probability - material dependence

Summary BOR experiments
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Cu, Al, stainless steel 30 GHz test structures
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Mo and Ti also finished + X-band Cu. X-band Mo under fabrication



Experimental Setup

Spark test UHV chamber

Heater,
sputter bias, and thermocouple
GND for FE :

measurement
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T differential lever :
~0.5 um accuracy
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Pulsed surface heating



Pulsed surface heating

Temperature rise in thin layer
during short pulse causes cyclical
Comparison of heating profiles compressive stress leading to
e fatigue cracking.

RF pulse

Temperature rise [K]

The pulse shapes correspond.

In particular the temperature
profile at the peak is very similar,
and results in similar stress level.
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Pulsed Laser Fatigue Tests

Surface of test sample is heated with pulsed laser. Between
the pulses the heat will be conducted into the bulk.

The Laser fatigue phenomenon is close to RF fatigue.

The operating frequency of the pulsed laser is 20 Hz -> low
cycle tests.

Observation of surface damage with electron microscope and
by measuring the change in surface roughness.

Tests for CuZr & GlidCop in different states under way.

Temperature increase at the surface [K]
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Pulsed Laser Fatigue Tests

10um

Cu-OFE at 10¢ cycles, AT=90°C CuZr at 10¢ cycles, AT=90°C
Fatigued surface No fatigue.



Ultrasonic fatigue experiment

Cyclic mechanical stressing of material at frequency
of 24 kHz.

High cycle fatigue data within a reasonable testing
time. CLIC lifetime 7x10!° cycles in 30 days.

Will be used to extend the laser fatigue data up to
high cycle region.

Tests for Cu-OFE, CuZr, CuCrlZr & 6lidCop Al-15
under way.

Calibration card
measures the
displacement
amplitude of

the specimen’s tip

Fatigue test
specimen

Reversed
stress
condition

Air Cooling
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Normalized Magnetic Field calculated from the Fatigue Strength [CLIC target=1]

Laser and ultrasonic fatigue results summary
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30 GHz and X-band rf benchmark experiments under preparation.
Low cycle 34 GHz experiment under way at Dubna.



igher order mode damping basics

Fundamental mode, red, stays
inside cavity because 7 below cut-
off of waveguides.

All other modes, lowest dipole
shown in yellow, can propagate in
wavequides.

They are then absorbed in loads,
the black pointed objects.




Hybrid Damped Structure (HDS)

Combination of slotted iris and radial waveguide (hybrid) damping

results in low Q-factor of the first dipole mode: ~ 10




HDS 60-cells Cu prototype

High speed 3D-milling with 10 pm precision
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Putting it fogether technologically



Bimetallic structures
Hot isostatic pressing and high-
speed milling of CuZr/Mo




Now try to reconcile the two effects for a linear collider
design,

High gradient - small aperture structures which gives low
surface electric field and power flow, short rf pulses,
short structure length, exotic breakdown resistant and
fatigue resistant materials with lower electrical
conductivity

High luminosity/efficiency - large aperture structures
for low transverse wakefields, long rf pulses, long rf
structures, as much copper as possible

For this we have developed a highly refined optimization
procedure.



Optimization procedure

Structure parameters are calculated
using parameters of the three cells:

first middle last
cell

cell cell -

Single cell parameter interpolation

Presented at EPAC



Optimization constraints

Beam dynamics constraints:
N depends on <a>/I, Aa/<a>, f and <E_..> because of short-range wake
N is determined by condition: W, , = 10 V/pC/mm/m for N = 4x10°

rf breakdown and pulsed surface heating (rf) constraints:

™ < 380MV/m & P, 1,12/C <24 MWns2/mm & DTmx< 56K
30 GHz, Mo X-band, Cu <30 GHz, Mo (cuzr)

Bi-metallic HDS ;

Posters: MOPLS128; MOPLS103

N.B. Applying the same constraints
to different structures implies that
the structures are equally challenging




Optimization figure of merit

Luminosity per linac input power:
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Optimization results
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